NMR SIGNALS OF METHYL GROUPS OF TRITERPENES WITH OXYGEN FUNCTIONS AT POSITIONS 2, 3 and 23

H. T. CHEUNG* and D. G. WILLIAMSON

Departments of Chemistry, University of Malaya, Kuala Lampur, Malaysia, University of Hong Kong, Hong Kong, and University of Aberdeen, Aberdeen, Scotland

(Received in Japan 1 July 1968; Received in the UK for publication 7 August 1968)

Abstract—NMR signals are assigned to each of the Me groups in a number of triterpenes of the ursane, oleanane, and lupane series with oxygen functions mainly at positions 2, 3 and 23. From these assignments the additive shielding effects of various substituents on the Me resonance frequencies have been deduced. The application of such data to structural problems has been illustrated.

It is known that for steroid¹ and triterpene²⁻¹¹ skeletons, modifications in substitution pattern are accompanied by systematic changes in the NMR chemical shifts of the angular Me groups. Such changes are, to a first approximation, additive. A complete assignment of Me resonances in a series of compounds is therefore of use in the elucidation of related structures.

We present here the results of an analysis of the Me resonances of triterpenes of the ursane, oleanane and lupane groups with oxygen functions mainly at positions 2, 3 and 23. Earlier work of this nature on the olean-12-ene triterpenes has been directed either to the parent hydrocarbon⁹ or to compounds with oxygen functions chiefly at rings E and D.^{10,11} No substantial prior analysis of the urs-12-ene system has been attempted.[†]

In the early work on lupane triterpenes² no distinction between the signals for the Me groups 23, 24 and 25 was possible. This difficulty was later overcome, in the case of the olean-12-ene series, by examination of deuterated derivatives,^{9,11} Complete assignment of Me signals was also achieved, for oleanane¹⁰ and other groups,^{6–8} by detailed analysis from internal evidence. The latter method has been followed, and the results for over 50 triterpenes are presented in Table 1. In determining the assignment, use was made of the known¹⁰ shielding effect on Me signals of olean-12-ene substituted at position 3 by β -OH, β -OAc, or ==O (Table 2a). It was assumed that such a set of values for Me groups 23, 24, and 25 (on ring A) may be extrapolated for use in other A/B *trans* triterpenes with a similar ring A. This is justified since values similar to those in Table 2a can be derived from the data^{7,8} on 4,4-dimethyl-cholestane and lanostane compounds.

As was pointed out,⁹ the spectral analysis of the ursane group is complicated by the second-order perturbation effect^{1b} exhibited by the two secondary Me resonances (C-29 and 30) (see I). Where not obscured by other signals (e.g. in Nos. 8–10, Table 1),

^{*} To whom enquiries are to be directed at the University of Hong Kong.

[†] A note on the assignment of methyl signals of six urs-12-ene triterpenes came to our notice when this paper was completed (R. Savoir, R. Ottinger, B. Tursch and G. Chiurdoglu, Bull. Soc. Chim. Belges 76, 371 (1967).

Control Contro	Chalaton	Si	ubstituents	5	Other			Resonance	trequenci	st of met	hyl		Remarks
No.	Sterout	2α	3ß	ង	su ucturat F ca tures	23	24	25	26	27	28	29/30	Ref.
-	Methyl	Н	Î	H		65	63	63	48-5	65		48-57	
7	urs-12-en-	Н	НО	Н	I	58	47	55	45-5	64:5	I	a	
ę	28-oate	Н	OAc	Н	I	52	52	57	45	65	I	a	q
4	(1)	OAc	НО	Н	Į	63	52	2	45	65	I	a	J
Ś	;	OAc	OAc	Н	I	54-55	54 -55	2	45	2	ļ	a	J J
9		НО	HO	НО	I	1	49	61	4	65	I	a	ន
٢		OAc	OAc	OAc	ł		¥	66-5	4	8	Ι	a	
œ		Ю			I	-	2	62	4	8	I	48-574	କ୍ଷ
6		OAc		-0,(,H)	I	1	65	67	4	8	1	48-574	ิส
10		OAc	OAc	OAc	но-вэ	I	77-5	89-5	65	62-5	ļ	48-574	4
11		Н	OAc	Н	19a-OH					73	1	15/	ð
12		OAc	٥¥٥	Н	19a-OH	55	55	2	42	72	ł	75/59*	Ą
13		НО	НО	Н	19œ-OH	62	8	58-5	41.5	72-5	Ι	75/a	مر
4	195-Un-	H	OAc	Н		50-51	50-51	53	<u>50-51</u>	8		6S(J, 7Hz)/82	q
15	13(18)-en- 20β,28-olide (V)	ονο	OAc	Н	١	53	53	61	49	67	Ι	65(J, 7Hz)/82	q
16	Methyl 11-	H	OAc	H		S0-52	50-52	67	58	17		a	g, CCI.
17	oxo-urs-12-	OAc	OAc	OAc	I		55	77-5	S	77:5	I	48-58"	21
18	en-28-oate	НО	HO	НО	I	I	8	73	¥	78	ļ	49-58	21
19	(II)	но	У О О	0 ² (%H	I	ł	99	74-5	54	79-5	ļ	48- 59°	21
ิส	Methyl olean-	Н	Î	Н	1	38	62-5-64	62-5-64	84	69-5	I	55, 56-5	·
21	12-en-28-	Н	HO	Н	ł	8	47-5	55-7	44 :5	8	I	55-57, 55-57	•===
ជ	oate (IIIa)	Н	OAc	Н	I	52	52	55-57-5	44 -5	6 8·5	Ι	55-5 7·5, 5 5-5 7·5	••••
ส		Н	OAc	OAc	ļ		50-5	58	4 5 5	67	1	54,56	
54		OAc	НО	н	I	62	52	63	43	67-5	I	54, 55-5	8
ห		OAc	OAc	Н	I	53-56	53-56	63	4	8	l	53-56, 53-56	ନ୍ଧ
5 6		OAc	OAc	OAc	I	I	53-5	65	4	66-5	I	53-5, 55	1
26a		(B-OAc)	OAc	(COOCH ₃)	1	ł	82-5	71	43	67	ł	53-54, 53-54	7

TABLE 1

120

H. T. CHEUNG and D. G. WILLIAMSON

Ł	50	r	ନ୍ଧ	ନ୍ନ		8	-	~~	j	50	ନ୍ଦ	8	କ୍ଷ	×	×	*	0	8	8	9	d		ନ୍ଧ	ନ୍ନ	E	u	ନ୍ଧ
54-5, 55-5	60, 56	54, 55	54-56, 54-56	53-5, 54-5	55-5, 56	54, 55	54, 55-5	54, 55-5	54, 56	53-57, 53-57	54, 50	53, 50	53, 50	55/63	54-5/63	54-5/63	74/	74-5/	/6L	-/100	-/102	-/102	-/102	-/101	45, 51-5"	44·5, 51"	45, 51 "
I	۱	-	I	I	1	-		I	ļ	I	1					NAMES	જ	51	45		۱					١	I
67	74-75	38	%	8	88	88	68	38	89	89	69-70	5	69 -8 9	78-5	78-5	78	83	83	82	57-58	57-58	57	58	57-58	56-57	56.5	58
45-5	4	4	4	43	43	43	43	43	46	45	69-70	S	6 8 69	55	54:5	54-5	69	2	74	55	55	55	55	57-58	56-57	¥	55-5
73	74-75	75-5	57	56-5	99	57	62	67	8	63	59-5	8	68-69	58	61	61	69	70	69	57-58	49-5	50-52	z	55	56-57	49.5	66-67
62	62-5	29	49	51	\$	2	2	64-5 2	¥	53-57	8	65	2	52	65-5		49-S	53	53-5	8	45.5	50-52	\$	52.5	62	45	72-5
1	1	1	62	1	1	1	1	-	1	53-57	·	1	ŧ	52	1	23	61	53	53-5	63-5	5758	50-52	60-5	52-5	65	57-5	66-67
I	16B-OAc	1	I	ł	ļ	1	1	I	HO-461	_	1	1	ł	16a,218,22a,28-OAc	16a,218,22a,28-OAc	16a,218,22a,24, 28-0Ac	30-COOH	30-COOH	30-СООН, 18α-Н	20,29-ene	20,29-ene	20,29-ene	20,29-ene	20,29-ene	1	1	1
OAc	OAc	но	Н	НО	HO	CH, O-	-0 ² ("H	—0 ^с ("н	OAc	H	НО	CH.,O-	CH3)0-	H	(CHO)	H	H	Н	Н	H	Н	Н	Н	Н	Н	Н	Н
OAc	OAc	НО	НО	НО	но	-OCH	000	000	OAc	OAc	НО	-OCH	-OCH	OAc	OAc	OAc	HO	OAc	OAc	Î	HO	OAc	НО	OAc	Î	HO	Î
(B-OAc)	(B-OAc)	(HO-d)	НО	Н	ЮН	Н	НО	OAc	OAc	OAc	НО	НО	OAc	H	Н	Н	Н	Н	Н	H	Н	Н	НО	OAc	H	Н	OAc
										Ol can-12-cn-28 - oic acid (IIIb)	18α-Oleanan-	138, 28-	olide (VI)	Olean-12-	ene (IIIc)			11-Oxo-olcan-	12-ene (IIId)	Methyl	lupan-	28-oate (IV)					
27	27a	27b	28	ଝ	8	31	32	33	*	35	8	37	38	66	4	41	42	43	4	45	\$	47	8	\$	ନ୍ତ	51	52

	Chalaton -	S	Substituents		Other			Resonan	ice frequenc	ies® of m	ethyl		Remarks and
Skeleton		2α	36	23	Features	23	24	25	26	21	28	29/30	Ref.
Ditto		OAc	НО	H	1	62	<u>50-5</u>	54	S,	४		45, 51"	8
		OAc	OAc	Н	1	52-54	52-54	52-54	55.5	58		45, 51"	20
		НО	НО	Н	I	99	4 8	5355	53-55	57	I	45, 51 "	20
			1			•	n Uz zeloti					ot 60 MH7	
							fultiplet pa	ve to 1 mile, urthy buried	under othe	sourcours r peaks.	Incontra		
						, ப	ata record	ed by Potie	rr et al. ¹⁴				
						ц,	ata kindly	provided t	y Dr. J. M	cLean;13	measure	d at 40 MHz but r	low converted
						to 60	MHz.	•					
						L ,	wo perturl	sed doublet	s, see Fig. 1	and text.			
							requencies	recorded b	y Bermejo	et al. ¹⁷			
						ц ,	bata kindly	provided b	y Dr. P. Pc	otier. ¹⁴			
						•	bata kindly	provided b	oy Dr. S. Ste	smhell. ²³			
						-	bata kindly	provided b	y Dr. H. Pi	inhas. ¹⁵			
						-	requencies	s recorded a	ind assigned	d by Turs	ch et al.1	0	
						I r	requencie	s recorded t	oy Schneide	t et al. ¹⁶			
						4	requencie	s recorded a	and assigned	d by Ito a	nd Ogin	0.19	
						н -	Data kindly	/ provided 1	by Professo	r K. Naki	nishi. ²⁴		
							wo double	ts, J _{H−Me} =	= 6 Hz; of.]	Ref. 2a.			
							Measured a	t 100 MHz	but now co	pnverted t	0 60 MH	Z	
						H a	requencie	s recorded s	and assigned	d by Apli	1 et al. ¹²		
						•	requencies	s found are	substantiall	ly the sarr	ie as that	recorded by Lehn	et al. ²
						-	Data kindly	/ provided 1	by Dr. R. A	. Eade. ²²			
						•	Data record	led by Ron	dest and Pc	olonsky. ¹⁷			
						1	Data kindly	provided t	oy Professo	r K. J. Mo	ILLS.		

these Me resonances appear, at 60 MHz, as an AB_3 -type signal (Fig. 1). In the case of the lupane triterpenes the well-defined splitting of the secondary Me resonances (see IV) has been discussed.^{2a}

From the data in Table 1, deduction of the effect of a particular substituent on the Me resonances can be undertaken. The values (at 60 MHz) arrived at for both the urs-12-ene and the olean-12-ene skeleton are listed in Table 2b. Apart for minor differences, values derived from either skeleton are mutually applicable. In contrast, a different set of values is necessary for the structurally less similar lupane group, and it is listed separately in Table 2c. It is found that in two examples (Nos. 14, 15; 36–38) the effect of alterations to the ring skeletonon Me resonances is apparently also additive as is shown in Table 2d.

Substituent	Incre	ments in	resonance	e frequenc	cies [®] of m	ethyl
Substituent	23	24	25	26	27	29/30
3β-ОН	+7	-2	+0-5	+1	0	0
3β-ΟΑς	0	+3	+1	0	0	+0-5
3-Oxo	+13	+13	+8·5	+ 5-5	+0-5	0

TABLE 2a. EFFECT OF SUBSTITUENTS ON METHYL SIGNALS OF OLEAN-12-ENE (IIIc)¹⁰ (AND URS-12-ENE)

* In Hz relative to TMS, for CDCl₃ solutions measured at 60 MHz.

TABLE 2b. EFFECT OF SUBSTITUENTS ON METHYL SIGNALS OF OLEAN-12-ENE (O) AND URS-12-ENE (U)

Substituent	I	ncrements	in resonanc	e frequenc	ies* of meth	ıyl	Skeleton from
Substituent	23	24	25	26	27	29/30	were computed
2α-OH	+2	+1.5	+1.5	-0-5	-0.5	-14	(O), (U)
2a-OAc	+ 2.2	+2.5	+ 7.5	-0.5	-0.5	- 1ª	ເດິ, ເບັ
2β-ОН	?	+13	+1.9	+ 1	0	+0.5	(O)
2β-OAc ^b	?	+10-5	+15.5	+1.5	0	0	(\mathbf{O})
23-OH ^b	_	+1	+1.5	- 1.5	-1	-0.54	(O), (U)
23-OAcª	—	-1.5	+2	+05	$\begin{cases} -1.5 \\ +1 \end{cases}$	-1	(O) (U)
23-CHO ^b	_	+13.5	+3	-0-5	0	0	(0)
23-COOCH ₃ ^b		+ 19	0	-2	-1.5	- 2.5	(O)
24-OAc ^b	+7	_	+3	-0-5	-0-5	0	(O)
16β-OAc ^b	?	+05	+1.5	+0-5	+ 7.5	+5, +1	(O)
6β-ОН°	?	+23.5	+23	+ 19	- 3.5	~0	ົ່(U)
196-ОН	?	+05	+1	+2	+ 1.5	+05	(O)
19a-OH	+0-5	+0.2	0	- 3·5	+8	~22/?	ິທີ
30-COOH'	~+1	-1	0	0	+1	~20/	(O)
11-oxo	~ - 1	+1.5	+12	+10	+13	~0	ີ່ເບ
36,23-isopropyl-							x - y
idenedioxy		+12.5	+5	-0-5	+0.2	04	(O) (U)
3β,23-ethyl-							(-) (-)
idenedioxy	<u> </u>	+13	+2	-0-5	-0-5	-1	(O)

* In Hz relative to TMS, for CDCl₃ solutions measured at 60 MHz.

^a Increments are similar to those one may calculate from the data recorded for the poly-acetates of camelliagenins A and C¹⁸.

^b Based on limited data, and confirmation is desirable.

^c For calculation, effect of 28-COOCH₃ as given by Tursch et al.¹⁰ employed.

⁴ Applies only to skeleton (O).

Values of Me signals of the parent systems methyl olean-12-en-28-oate (IIIa) and methyl lupan-28-oate (IV) are available from the work of Tursch *et al.*¹⁰ and of Lehn and Ourisson,^{2a} and are listed in Table 3. Table 3 also shows similar data for methyl urs-12-en-28-oate (I), deduced from the present work. Calculated resonance frequencies based on Tables 2 and 3 agree with experimental values (Table 1) to within 2 Hz, attesting to the basic premise of additivity.

Marked deviation from additivity, however, is shown by the 2α -acetoxy-3-ketone (No. 52) of methyl lupan-28-oate, the experimental frequencies for Me groups 24 and 25 being respectively 10 and 6 Hz higher than calculated. Such anomaly in 2α -acetoxy-4,4-dimethylcholestan-3-one has been discussed by Hemmert *et al.*⁸ in terms of the preferred orientation of the acetoxy carbonyl. A lesser anomaly (~3Hz for C-23, 24 and 25) shown by the corresponding 2α -acetoxy-3 β -ol (No. 53) could be similarly caused. Departure from additivity is expected to occur also in a molecule such as methyl bredemolate (methyl 2β , 3α -dihydroxy-olean-12-en-28-oate)* in which the presence of two axial OH groups is believed²⁵ to cause ring A to be distorted from the chair conformation.

It is pertinent to make some observations on the values presented in Tables 2b and 2c on the contribution of substituents to Me resonances. A 2 α substituent is symmetrically placed with respect to Me 24 and 25 and is thus expected^{1a, 26} to have similar effects on these Me groups. For urs-12-ene and olean-12-ene, values found for 2 α -OH (+1.5, +1.5 Hz) are in agreement with the above deduction. In the case of 2 α -OAc, however, the effect on Me 25 (+7.5 Hz) is significantly larger than that on Me 24 (+2.5 Hz). This is presumably because the acetoxy group adopts a conformation in which the deshielding cone of the carbonyl is directed towards Me 25. The above situation, however, apparently does not arise where the parent system is lupane (Table 2c).

Substituent	I	ncrements i	n resonance	frequencie	s [*] of methy	rl
	23	24	25	26	27	29/30
3β-ОН	+7	-3	-1.5	- 1.5	-0-5	0
3β-OAc	+1	+3	-1	-05	-0.2	0
3-oxo	+ 14	+13	+6	-0-5	0	0
2α-OH	+ 2.5	+ 2.5	+ 4.5	0	+0-5	0
2α-OAc	+ 1.5	+ 1.5	+ 3.5	+1	' +0.5	0
(20-ene)	-0.2	-0-5	+0-5	0	0	-/~+

TABLE 2c. EFFECT OF SUBSTITUENTS ON METHYL SIGNALS OF LUPANE

* In Hz relative to TMS, for CDCl₃ solutions measured at 60 MHz.

The 6β -OH group is in a 1:3 di-axial relationship with Me 24, 25, and 26 and is expected to deshield²⁷ each strongly. This is borne out in practice, the effect on these Me groups being of the order of 20 Hz.

Similarly, a 19 α -OH causes a pronounced deshielding (8 Hz) of the spatially neighbouring Me 27, and the significance has been discussed by Potier¹⁴ and González¹⁷ and their respective coworkers.

In the following example, the utility of Me shifts data in structural determination

* NMR spectrum kindly provided by Professor R. Tschesche. Assignments: C-23, 24, 25 26 27 29/30 (54, 60, 65) 43 67 54, 54 Hz

]	increments i	in resonanc	e frequencies	• of methy	rl
Skeletal change -	23	24	25	26	27	29/30
Methyl olean-12-en-28 oate \rightarrow 18 α -oleanan- 13 β -,28-olide (VI)	?	-0.5	+2	+ 26.5	0	-1, -3
Methyl urs-12-en-28- oate \rightarrow 19 ξ -urs-13(18)- en-20 β ,28-olide (V)	-1.5	-1.5	-3.5	+4.5	+2	?

TABLE 2d. EFFECT OF SKELETAL CHANGES

* In Hz relative to TMS, for CDCl₃ solutions measured at 60 MHz.

Company		Re	sonance fre	quencies* o	f methyl		Def
Compound	23	24	25	26	27	29/30	KCI.
Methyl urs-12- en-28-oate (I)	52	49.5	55.5	45	65	48-57 mult.	This work
Methyl olean-12- en-28-oate (IIIa)	52.5	50	55·5	43·5	69	55-5, 56	10
28-oate (IV)	50-5	48 ·5	51.5	56	57-5	45, 51	2a

TABLE 4.

TABLE	3.	"PARENT"	SYSTEMS
-------	----	----------	---------

* In Hz relative to TMS, for CDCl₃ solutions measured at 60 MHz.

		Re	sonance freq	uencies* of	methyl	
-	23	24	25	26	27	29/30
Expt. value [†] for 3β-acetate IX	52	52	57	42	73.5	_/75.5
Expected" for 2a-acetoxy-3-	67.5	>65	>71.5		73.5	75
Calc. [*] for 2β -acetoxy-3-one VII	67	73	80	49	74	/75
Calc. ^c for 3β-acetoxy-2-one VIII	66	50-5	56	42	73.5	/75
Foundt	67	52	55	42	73·5	

" See text, above.

^b Effect of 2 β -OAc on methyl 23 as recorded by Hemmert *et al.*⁸ = +2 Hz.

^c Effect of (3β-OAc + 2-oxo) on methyl groups 23, 24 and 25 adopted from data of Hemmert *et al.*⁸: +14, +1, -0.5 Hz; that on 26 and 27 assumed to be negligible.

* In Hz relative to TMS, for CDCl₃ solutions measured at 60 MHz.

† We are grateful to Dr. J. McLean for kindly putting at our disposal his unpublished data (measured at 40 MHz, but now converted to 60 MHz for computation).

has been illustrated. A triterpene which was given a 2 ξ -acetoxy-3-one structure VII²⁸ shows Me resonances† which do not accord with such formulation (Table 4). However, good agreement with values calculated for the corresponding 3 β -acetoxy-2-one structure VIII is noted by us (Table 4). In confirmation, the low field region of the NMR spectrum is found to show a sharp one-proton singlet at τ 5-03,† a signal which is incompatible with structure VII but which may be assigned to the unflanked C-3 proton in structure VIII. A similar signal near τ 5 had been recorded for the 3 α -proton in 3 β -acetoxy-2-ones of the 4,4-dimethylcholestane, 8-lanostene,³⁰ and 8-euphene series.²⁹

EXPERIMENTAL

Unless stated otherwise, NMR spectra were determined at 60 MHz on 5-15% (w/v) solutions in CDCl₃ on the Varian A-60 or Hitachi H-6013 spectrometer. Resonance frequencies quoted referred to TMS as internal standard. Unless referred to otherwise, and excepting compounds 1 and 2 (Table 1), triterpenes samples used were prepared at the University of Malaya.^{20, 21}

Acknowledgements---We acknowledge with thanks the generosity of the following for providing samples or unpublished spectral data: Professors D. H. R. Barton, R. J. Morris, K. Nakanishi, and R. Tschesche, Miss W. H. Hui, Mme. J. Polonsky, Drs. H. R. Arthur, R. A. Eade, J. McLean, H. Pinhas, R. Potier, E. Ritchie, and S. Sternhell. We are grateful to Professor M. Ohashi and Dr. J. B. Taylor for arranging for some NMR measurements.

[†] We are grateful to Dr. J. McLean for kindly putting at our disposal his unpublished spectral data (measured at 40 MHz, but now converted to 60 MHz for computation).

REFERENCES

- ¹ ^a R. F. Zürcher, Helv. Chim. Acta 46, 2054 (1963);
 - ^b N. S. Bhacca and D. H. Williams, Applications of NMR Spectroscopy in Organic Chemistry. Holden-Day, San Francisco (1964) and references cited therein.
- ² J. M. Lehn and G. Ourisson, Bull. Soc. Chim. Fr. 1137 (1962);
- ^b J. M. Lehn and A. Vystrčil, *Tetrahedron* 19, 1733 (1963).
- ³ J. M. Lehn, Bull. Soc. Chim. Fr. 1832 (1962).
- ⁴ S. Huneck and J. M. Lehn, Ibid. 1702 (1963).
- ⁵ D. Lavie, Y. Shvo and E. Glotter, *Tetrahedron* 19, 2255 (1963); D. Lavie, B. S. Benjaminov and Y. Shvo, *Ibid.* 20, 2585 (1964).
- ⁶ A. I. Cohen, D. Rosenthal, G. W. Krakower and J. Fried, Ibid. 21, 3171 (1965).
- ⁷ F. Hemmert, B. Lacoume, J. Levisalles and G. R. Pettit, Bull. Soc. Chim. Fr. 976 (1966).
- ⁸ F. Hemmert, A. Lablache-Combier, B. Lacoume and J. Levisalles, *Ibid.* 982.
- ⁹ J. Karliner and C. Djerassi, J. Org. Chem. 31, 1945 (1966).
- ¹⁰ B. Tursch, R. Savoir and G. Chiurdoglu, Bull. Soc. Chim. Belges 75, 107 (1966); B. Tursch, R. Savoir, R. Ottinger and G. Chiurdoglu, Tetrahedron Letters 539 (1967).
- ¹¹ S. Ito, M. Kodama and M. Sunagawa, Ibid. 3989.
- ¹² R. T. Aplin, T. G. Halsall and T. Norin, J. Chem. Soc. 3269 (1963).
- ¹³ A. T. Glen, W. Lawrie, J. McLean and M. E. Younes, *Ibid.* 510 (1967).
- ¹⁴ P. Potier, B. C. Das, A.-M. Buh, M.-M. Janot, A. Pourrat and H. Pourrat, Bull. Soc. Chim. Fr. 3458 (1966).
- ¹⁵ H. Pinhas, D. Billet, S. Heitz and M. Chaignean, Ibid. 1890 (1967).
- ¹⁶ W. P. Schneider, E. L. Caron and J. W. Hinman, J. Org. Chem. 30, 2856 (1965).
- ¹⁷ J. Bermejo, J. L. Breton, G. de la Fuente and A. G. González, Tetrahedron Letters 4649 (1967).
- ¹⁷ * J. Rondest and J. Polonsky, Bull. Soc. Chim. Fr. 1253 (1963).
- ¹⁸ S. Ito, M. Kodama and M. Konoike, Tetrahedron Letters 591 (1967).
- ¹⁹ S. Ito and T. Ogino, *Ibid.* 1127.

- ²⁰ H. T. Cheung and M. C. Feng, J. Chem. Soc. 1047 (1968).
- ²¹ H. T. Cheung and L. Tökés, Tetrahedron Letters 4363 (1968).
- ²² R. A. Eade, J. J. H. Simes and B. Stevenson, Aust. J. Chem. 16, 900 (1963).
- ²³ D. J. Collins, J. J. Hobbs and S. Sternhell, Ibid. 1030.
- ²⁴ S. Sasaki, H. C. Chiang, K. Habaguchi, H. Y. Hsu and K. Nakanishi, Bull. Chem. Soc. Japan 39, 1816 (1966).
- ²⁵ R. Tschesche, E. Henckel and G. Snatzke, Ann. Chem. 676, 175 (1964).
- ²⁶ E. R. Malinowski, M. S. Manhas, G. H. Müller and A. K. Bose, Tetrahedron Letters 1161 (1963).
- ²⁷ Y. Kawazoe, Y. Sato, M. Natsume, H. Hasegawa, T. Okamoto and K. Tsuda, Chem. Pharm. Bull. Tokyo 10, 338 (1962).
- ²⁸ W. Lawrie, J. McLean and M. E. Younes, J. Chem. Soc. 851 (1967).
- ²⁹ D. Lavie, E. Glotter and Y. Shvo, Tetrahedron 19, 1377 (1963).
- ³⁰ A. Lablache-Combier, B. Lacoume and J. Levisalles, Bull. Soc. Chem. Fr. 897 (1966).
- ³¹ R. J. Morris, W. B. Dye and P. S. Gisler, J. Org. Chem. 26, 1241 (1961).